Guest Selective Molecular Recognition by an Octadecylsilyl Monolayer Covalently Bound on an SnO₂ Electrode

Kazuo Yamamura," Hitoshi Hatakeyama, Kensuke Naka, (the late) Iwao Tabushi, and Kazue Kurihara

Department of Synthetic Chemistry, Kyoto University, Sakyo-ku, Kyoto 606, Japan

An octadecylsilyl monolayer on SnO₂, which was prepared in the presence of a template guest molecule, was guest binding selective.

The linking of monolayer¹⁻⁴ and molecular recognition chemistry⁵⁻⁻⁷ should provide a new promising area of research. For example, we have shown recently that an octadecylsilyl (ODS) monolayer, $ODS/SnO₂$ (covalently bound on an $SnO₂$ electrode by Sagiv's surface modification $technique$, 4 acquired molecular recognition ability towards guest molecules having long, thin hydrophobic tails *(e.g.,* chlorophyll, or vitamins K_1 , K_2 , or E *etc.*).⁸ The results provided a new access to a 'supramolecular' sensor, the amperometric response of which was sensitive enough to detect vitamin K_1 at a concentration as low as 10^{-6} M.8

Herein we report that the molecular recognition by the ODS/Sn02 monolayer has been made guest selective through co-implanting template guest (TG) in the ODS monolayer followed by extracting out the TG to leave host binding sites (Scheme 1).

The first example of the present type of surface modification was reported by Sagiv,⁴ and the nature of the adsorbate/ surface bonding has been intensively investigated.4 In the present work, the template guest molecule, n-hexadecane **(l),** 2-cholesteryl 3,6-dioxadecyl carbonate **(2),** or decyl adamantane-1-carboxylate (3),⁹ plays a key role in the SnO₂ modification by the ODS monolayer *(vide infra)*. Thus, SnO₂ electrodes (1 \times 3 cm, pretreated with conc. HNO₃, H₂O, 2 \times 10^{-2} M aqueous NaOH, and H₂O successively) were treated with a 6.3×10^{-4} M solution of octadecyltrichlorosilane in a 10 ml mixture of TG (1), (2), or (3)–CHCl₃–CCl₄ (8:0.8:1.2,

v/v/v) (Scheme 1) for 10 min at room temperature. The ODS/SnO₂ monolayers were soaked in CHCl₃ (4×10 ml) to extract out the TG, affording 'active' $ODS/SnO₂$ electrodes, **1-111,** respectively (Scheme 1). When used as the working electrode in a cyclic voltammetric cell system, the 'active' ODS/SnO₂ electrode III respond to vitamin K₁ (4) at -0.7 V *vs.* Ag/AgCl at a scanning rate of 200 mV/s in MeOH-H₂O $(3:2, v/v)$ containing 0.1 M KCl and 20 mm phosphate buffer (pH 7.0). **As** a typical example, the observed cyclic voltammetric response of electrode I is depicted in the inset of Figure 1. The cathodic peak current, i_{pc} , due to the vitamin K_1 reduction increased from 2.8 to 53 μ A/cm² with an increase of vitamin K₁ concentration from 7.5×10^{-8} to 4.5×10^{-6} M. For the 'inactive' $ODS/SnO₂$ electrodes without CHCl₃ treatment.

 i_{pc} was very small, *e.g.*, $8 \pm 1 \mu A/\text{cm}^2$ for electrode I even at a high concentration of vitamin K₁ (3×10^{-6} M).

The 'active' ODS monolayer similarly made on $SiO₂$ [ODS/SiO₂ I, TG = n-C₁₆H₃₄ (1)] adsorbed other guest molecules having long, thin hydrophobic tails such as chlorophyll a, **3-phytyloxypyrene-5,8,lO-trisulphonate,** or 3-hexadecyloxypyrene-5 ,8,10-trisulphonate, as shown by the observed electronic absorption band at λ_{max} , 436, 375, or 375 nm, respectively. When the $C_{18}H_{37}SiCl_3$ treatment was repeated on the 'active' ODS/Si02 monolayer I 3, *5,* and 7 times successively, the adsorption density of chlorophyll a *(ca.* 1.3 molecules/100 A2 apparent surface area) decreased to *ca.* 0.5, 0.2, or 0.1 molecules/100 \AA^2 , respectively, suggesting that the density of the molecular recognition sites on ODS monolayer is controllable.

The quantity of electricity (Q_i) [†] that passed during the current response showed saturation behaviour when the vitamin K_1 concentration was increased; typical results are shown in Figure 1. This observation again supports the operation of molecular binding mechanism. The number of adsorbed vitamin K_1 molecules, N_i , is given by $N_i = Q_i/2F$. The adsorption equilibrium constant, *KG,* which is given by equation (1) (Langmuir isotherm) was found to be satisfactorily constant over the vitamin K_1 concentration range investigated (see Figure 1). The treatment also allowed *n* values (number of host binding sites) to be determined uniquely, *e.g., ca.* 3.5/100 A2 (apparent surface area) for electrode I.

$$
K_{\rm G} = N_i / (n - N_i) G \tag{1}
$$

Figure 1. Quantity of electricity (Q_i) due to vitamin K_i reduction by electrode I. Average of independent experiments of five ODS/SnO, **I** electrodes. The inset shows the typical cyclic voltammogram of the electrochemical response of electrode I at 3×10^{-6} w vitamin K₁ concentration in MeOH-H₂O (3:2, v/v) containing 0.1M KCl , 20mm phosphate buffer (pH 7.0), 20.0 ± 0.5 °C.

Figure 2. Inhibition of vitamin K_1 response of (a) electrode I, (b) electrode II, (c) electrode III by cholesterol. Vitamin K_1 concentration, (a) 1.50×10^{-6} M, (b) 1.43×10^{-6} M, (c) 2.8×10^{-6} M in aqueous MeOH $(2:3, v/v)$ containing 20 mm phosphate (pH 7.0) and 0.1 m KCl, temp. 20.0 \pm 0.5°. (a) and (b) show the theoretical curves: K_I values are given in Table 1. Each data point is the average of vitamin K_1 responses of five independent $SnO₂$ electrodes.

The electrochemical response (Q_i) to vitamin K_1 was inhibited by a competitive inhibitor that was recognizable by each $ODS/SnO₂$ monolayer. Figure 2 shows the plot of Q_i *vs.* cholesterol (5) concentration for electrodes I-III. Clearly, cholesterol is recognized by the host binding sites of electrodes I or II, blocking the access of vitamin K_1 (probe molecule) to the electrode, while no appreciable competitive inhibition was seen for electrode 111. The inhibition constant, *K,,* of cholesterol was evaluated as $(3.3 \pm 0.1) \times 10^4$ and (5.3 ± 0.3) \times 10⁴ dm³ mol⁻¹ for electrodes I and II, respectively (Table 1), suggesting that the overall inhibition equilibria: $G_iM + I \rightleftarrows$ $G_{j-1}M$ ($j = 1-n$), have an identical inhibition constant, K_1 .

t Qi was determined as the peak area of the cathodic current at -0.7 V. Under the present condition, $i_{\rm pc}$ varied linearly with scan rate (v) in the 2-100 mV/s range (see ref. 10).

Table 1. Adsorption equilibrium constant (K_G) and inhibition constant (K_I) for ODS modified electrodes I-III.^a

Electrode, TG	K_{C} vit. $K_1(4)$	K,		
		$n-C_{16}H_{34}(1)$	Cholesterol (5)	Adamantane (6)
$I_{1}(1)$	2.2×10^{5}	$(1.9 \pm 0.1) \times 10^4$	$(3.3 \pm 0.1) \times 10^4$	b
II, (2)	5.0×10^{5}	$(1.6 \pm 0.1) \times 10^4$	$(5.3 \pm 0.3) \times 10^4$	b
III, (3)	5.8×10^{4}	$(4.8 \pm 0.1) \times 10^3$		14 ± 0.5

a dm³ mol⁻¹ in MeOH-H₂O (3:2, v/v) containing 0.1 M KCl and 20 mm phosphate buffer (pH 7.0). No appreciable inhibition observed.

Figure 3. Mismatching between CH₂ cross section and bottom cross section. Bonding (b) (idealized) seems more favourable than bonding (a) (idealized) for steric reasons, when the monolayer including TG is covalently fixed onto the support through such bonding.

Therefore, the template cavity made with (3) on ODS/SnO₂ monolayer **111** is inappropriate for cholesterol recognition. By contrast, electrode **I11** showed appreciable recognition ability towards adamantane **(6),** judged from the inhibition of vitamin K_1 response of electrode **III** by (6), the value of K_1 for which was 14 ± 5 dm³ mol⁻¹ (Table 1). Adamantane [globular guest molecule, **(6)]** was not adsorbed on electrodes I and **I1** (Table 1).

The conclusion then may be drawn that molecular recognition sites have been made in the 'active' $ODS/SnO₂$ monolayer, and that guest binding selectivity results which reflects the shape and size of the template guest molecule employed. The mechanism by which the monolayer provides supramolecular cavities is interesting but needs further studies. There are certain basic requirements: (i) the presence of an appropriate template molecule and (ii) selection of an appropriate modifying reagent which bears a hydrocarbon chain of desired cross section. The latter requirement may be important to induce mismatching: the bottom cross section mismatches the top cross section in the system schematically depicted in Figure 3.

We acknowledge the financial support of Japan Ministry of Education, Science, and Culture.

Received, 28th July 1987; Corn. 1092

References

- 1 **K.** B. Blodgett and L. Langmuir, *Phys. Rev.,* 1937, **51,** 964.
- 2 **K.** P. Seefeld, D. Moebius, andH. Kuhn, *Helv. Chim. Actu,* 1977, **60,** 2608.
- 3 **W.** Arden and P. Fromherz, *Ber. Bunsenges. Phys. Chem.,* 1978, **82,** 868.
- 4 J. Sagiv, *1. Am. Chem. SOC.,* 1980, **102,** 92; **S.** R. Cohen, R. Naaman, and J. Sagiv, J. *Phys. Chem.,* 1986, **90,** 3054, and references cited therein.
- *5* **I.** Tabushi, *Acc. Chem. Res.,* 1982, **15,** 66.
- 6 D. J. Cram, *Science,* 1983, **219,** 1177.
- 7 J. **M.** Lehn, *Science,* 1985, **227,** 846.
- 8 **I.** Tabushi, K. Kurihara, K. Naka, **K.** Yarnamura, and H. Hatakeyama, *Tetrahedron Lett.,* 1987, **28,** 4299.
- 9 G. Sengler and F. Wunsche, *Erdol. Kohle,* 1962, **15,** 702.
- Fundamentals and Applications,' Wiley, New York, 1980. 10 A. J. Bard and L. R. Faulkner, 'Electrochemical Methods.